Pride in Technology-Based Health Interventions: A Double-Edged Sword

Danae Manika
Queen Mary University of London

Diana Gregory-Smith
University of Birmingham

Paolo Antonetti
Queen Mary University of London

ABSTRACT

We examine in this study the contrasting effects (positive and negative) of hubristic pride about one's weight, after exposure to a weight control Web site, on consumers' attitudes and self-regulatory behavior. Using an experiment embedded in a survey, we offer in this study insights into the multifaceted consequences generated by pride, when elicited by technology-based social marketing interventions. Greater feelings of hubristic pride about one's weight translate into positive attitudes toward the Web site information but reduce the perceived relevance of the information to the self. This reduced perceived relevance leads to poor perceptions of Web site interactivity with consequent negative effects on behavioral regulation. Thus, increasing feelings of pride can be a double-edge sword. Hubristic pride directly affects technology-based behavioral intentions, such as intentions to download a health-related mobile application, but indirectly influences nontechnology-oriented intentions to take health action through attitudes. Marketers should be cautious of the mixed attitudinal and behavioral effects of pride. © 2017 Wiley Periodicals, Inc.
Thus, the current research (1) examines the positive and negative consequences of consumers’ feelings of hubristic pride on self-regulatory behavior1, and (2) tests how this emotion, experienced as a result of exposure to the technology-based weight control intervention, may direct consumer choice of a technology-oriented weight control behavior versus a nontechnology-oriented behavior. To achieve these aims, a real weight control Web site is used as a technology-based health intervention to address limitations associated with laboratory experiments, such as artificiality and lack of generalizability (see Levitt & List, 2007 and Schram, 2005). Researchers argue that nonlaboratory experiments are highly relevant for policymakers (Morton & Williams, 2009). Moreover, field experiments are considered to speak to both theorists and policymakers (List, 2007); thus they have both a knowledge-generating contribution and a real-world impact.

The following section reviews prior literature on technology-based social marketing interventions and weight control (including a section on the used weight control Web site), as well as the literature on emotions (particularly pride), attitudes, and self-regulatory behavior. Then, several hypotheses are proposed, followed by the methodology and results. The article concludes with a discussion of the implications, limitations, and future research directions.

1 This study conceives weight control as a form of self-regulatory behavior.

LITERATURE REVIEW AND HYPOTHESES DEVELOPMENT

Social Marketing and Technology-Based
Weight Control Interventions

Prior social marketing research has examined the use of the Internet as a social marketing tool to encourage particular types of behavioral change (e.g., water conservation, Walton & Hume, 2011; participation in census, Andreassen, 2002), and to disseminate information about social marketing interventions (Uhrig et al., 2010). Health-related social marketing research focused on examining the influence of perceived health risk and consciousness on health-related Internet usage (Ahadzadeh et al., 2015) and the role of social media in health communications (Thackeray, Neiger, & Keller, 2012). Overall, prior research focuses on the effectiveness of such campaigns (Cullen et al., 2013; Matano, Futa, Wanat, Mussman, & Leung, 2000; Papadaki & Scott, 2006) or the critical challenges for successful implementation in different contexts (Young et al., 2012). Cugelman, Thelwall, and Dawes’s (2011) meta-analysis of online health-related social marketing interventions shows most e-health interventions had an overall small but nonetheless significant
impact on health behavior. This indicates such interventions can motivate voluntary change (Ahadzadeh et al., 2015; Shaw et al., 2013). Research has also examined weight loss and obesity.

Weight control interventions via Internet-based technologies (e.g., Web sites, mobile phone applications) reduce the burden of traditional and time-consuming interventions, increase self-monitoring, and provide immediate tailored feedback that increases adherence to weight control advice (e.g., Burke et al., 2011; Petersen, Sill, Lu, Young, & Edington, 2008; Unick et al., 2015). Multiple studies have examined various Internet-based weight control interventions and note their differences. Tate, Wing, and Winett (2001) noted structured weight loss programs delivered via the Internet and e-mail would be more effective than links to educational Web sites, while Shaw et al.’s (2013) found that weight control text messages are successful if delivered at least once a day, with both promotion and prevention framing having a positive effect on weight loss over a three-month period. Internet weight loss programs may also appeal to different consumer segments (Unick et al., 2015). Petersen et al.’s (2008) study showed such interventions can improve employees’ eating habits, leading to weight loss. Unick et al. (2015) also recently point out technology-based interventions can also be used to identify individuals who may “fail to achieve clinically significant weight loss” (Unick et al., 2015, p. 1560) and thus may require subsequent interventions.

While technology-based interventions appear beneficial to weight control behavior change strategies, systematic reviews of Web-based weight loss interventions (e.g., Arem & Irwin, 2011; Neve, Morgan, Jones, & Collins, 2010) propose inconclusive results for body weight loss. Neve et al. (2010) attribute this to prior studies’ small sample sizes and the heterogeneity of the interventions design and measured outcomes. Therefore, additional research on the interaction between technology and weight control activities is needed (Lowe et al., 2015).

In addition, most weight control Internet-based studies focused on cognitive variables and overlooked emotions. Elffhag and Rössner (2005) note how emotions play a vital role in weight loss and weight maintenance. However, research has “only begun to explore the relationship between pride and health promoting behaviours such as physical activity” (see Mack, Kouali, Gilchrist, & Sabiston, 2015, p. 1050), and few, if any, studies examined how pride evoked by exposure to a technology-based health intervention can influence consumers’ cognitive processes. The current study addresses this research gap by investigating the positive and negative ramifications that feelings of pride, about one’s weight after exposure to a weight control Web site, can have on consumers’ attitudes and self-regulatory behavior.

Among the limited literature on pride and health, Troop’s (2016) research examined the effects of shame and pride, and found that people who are ashamed of their bodies are more likely to consume less calories in the next seven days. Alternatively, Goss and Allan (2009) argue that pride could have an important role in the onset and maintenance of some eating disorders. Restriction of food and other impulses are often associated with self-esteem and pride in the self (Goss & Allan, 2009). Pride in appearance seems to facilitate weight maintenance (DePue, Clark, Ruggiero, Medeiros, & Pera, 1995) and fitness-related pride increases engagement with physical activity (Mack et al., 2015).

Related to this, Teixeira et al.’s (2012) systematic review found that intrinsic motivation (e.g., feelings of enjoyment for an activity) is more predictive of long-term exercise adherence, than extrinsic motivation to achieve outcomes separately to an activity. Therefore, enjoyment of an activity can have positive effects on weight control behavior. Moreover, social network sites allowing the interaction of people with common interests appear to increase self-esteem and desires of helping others lose weight, which is beneficial for self-monitoring and adherence (Merchant, 2015). Thus, the hedonic experience of using technological interventions could help motivate weight control behavior and adherence to advice by facilitating persuasion (Coyle & Thorson, 2001; Fortin & Dholakia, 2005) through increasing pride in consumers’ weight. This is why emotional self-reward (i.e., “Feel pride in yourself”) is a common strategy for weight loss Internet programs and Web sites (Baek & Yu, 2009).

Despite this, the effects of pride evoked by a Web site have not been previously investigated. To feel this gap, we examine feelings of pride elicited by exposure to a real technology-based health intervention: the United Kingdom’s National Health Service (NHS) weight control Web site.

The United Kingdom’s National Health Service Weight Control Web Site

The United Kingdom has the highest obesity percentage rate in Europe (NHS, 2014), affecting one in every four adults (NHS, 2015). This is expected to rise so that “two-thirds of women and three-quarters of men in Britain will be overweight by 2030” (Pemberton, 2015). To tackle this, the NHS has created a technology-based intervention in the form of a Web site that provides information on weight control, services to help in weight loss, and healthy eating (Datamonitor, 2003). This includes two Web pages that offer information related to weight control, that is, “Lose weight” (http://www.nhs.uk/livewell/loseweight/Pages/Loseweighthome.aspx); “Healthy eating” (http://www.nhs.uk/livewell/healthy-eating/Pages/Healthyeating.aspx).

In the United Kingdom, diet Web sites are very popular (Papadaki & Scott, 2005), and while there are many options, Yu, King, and Yoon (2010) note that 90% of people click on a result within the first three pages of the search engine results. The NHS Web pages for...
weight loss and healthy eating are often among the top results on related keywords search. This NHS Web site received 47% of all traffic from obesity search terms in April 2014 and there were more than 50 million visits in March 2016 on weight loss Web pages (NHS, 2014, 2016). Weight control is one of the most frequently visited topics on the NHS Web site, indicating the rising consumer trend of using technological platforms for health-related purposes and the relevance of the selected weight control intervention for the fight against obesity in the United Kingdom.

The NHS Web site includes a wide range of information and strategies aimed at the general public (e.g., “Develop healthier eating habits and get more active with the NHS Choices weight loss guide,” “Keep hunger at bay with these low-calorie twists on some of the nation’s favourite snacks,” and “Find a weight loss plan to suit you with our review of the most popular diets”). This information is relevant to most consumers regardless of their current weight; as individuals with both a healthy and an unhealthy body mass index (BMI) may have a poor diet and experience health problems as a result (Stewart, 2015). Yu et al. (2010) content analysis of 100 dieting Web sites in the United Kingdom found that a “health and nutrition” appeal (positive information) was most frequently used (94%), while only a small percentage (7%) of the Web sites contained information about diseases (threat/negative information).

We selected in this study the NHS Web site for two reasons, aside from its popularity in the United Kingdom. First, it is a positively framed source of information, which fits the aim to examine hubristic pride evoked by a technology-based health intervention. The NHS's Web site contains positive phrases (e.g., “A healthy, nutritious diet can help you look and feel your best, and is easier than you might think”) and stories of personal success (e.g., “Phil says the weight loss plan has left him feeling healthier, fitter and more confident,” “Christine says the NHS weight loss plan helped her overcome a love-hate relationship with food”), which may generate a feeling of pride among consumers exposed to the Web site. Baek and Yu (2009) also suggest that eliciting pride is a common strategy for weight loss Internet programs and Web sites in some countries. However, a content analysis of related Web sites on self-reward strategies has not yet been conducted in the United Kingdom to verify this. While perhaps not the only Web site using this strategy in the United Kingdom, the NHS Web site was chosen given our focus on hubristic pride. Second, the NHS Web site allows examining the influence of pride on two types of health actions (behavioral responses): downloading the BMI mobile phone application to get practical weight loss information (i.e., a technology-oriented behavior) and a concrete 12-week weight control plan for consumers to use (i.e., a nontechnology-oriented behavior).

On the basis of this evidence, we expect that consumers’ emotional responses to a technological intervention will determine their attitudes toward the intervention (i.e., Web site information and interactivity). Affect can inform judgments, in a quick heuristic process in which feelings are used as shortcuts for evaluating objects (i.e., “How do I feel about it?”; Forgas, 1995). Affect also influences message elaboration and processing (Lien, 2001). Research has shown that the effect of emotion on behavior is dependent on the cognitive processes active when the emotion is experienced (Han, Lerner, & Keltner, 2007), the inferences consumers make about the causes of emotions (Ivanic, 2015; Salerno et al., 2015), and consumers’ contextual knowledge of and the meanings associated with the behavior markers are promoting (Crusius & Lange, 2014; Frijda, 2005). The current study examines pride as a discrete emotional experience (generated from exposure to the Web site) and its role in self-regulatory behavior (Patrick et al., 2009; Tracy & Robins, 2007) using the contextual inferential processes that shape the emotional experience and its consequences (Salerno et al., 2015).

Pride and Self-Regulation

Pride is an emotion associated with positive outcomes considered valuable and relevant to self-image (Tracy & Robins, 2007). According to this definition and consistent with previous research (e.g., Patrick et al., 2009), weight control is an adequate context to assess the impact of pride on self-regulatory behavior, considering the focus of today’s society on body image and health (see Castonguay et al., 2012). However, the potential role of this emotion in self-regulation is controversial. While some psychological research suggests

2 Purpura, Schwanda, Williams, Stubler, and Sengers (2011) note that most behavioral weight loss programs using technology start with a BMI calculation to determine the need for change.
Pride can result in effective self-regulatory behaviors (Antonetti & Maklan, 2014b; Boezeman & Ellemers, 2008; Hofmann & Fisher, 2012; Williams & DeSteno, 2008), other studies claim pride can lead to licensing and, therefore, reduce consumers’ commitment to self-regulation (Fishbach & Dhar, 2005; Salerno et al., 2015; Wilcox et al., 2011). This could be due to different appraisals of information that might be part of consumers’ emotional experiences (Salerno et al., 2015).

Scholars suggest that pride comes in two forms: authentic pride and hubristic pride (Tracy & Robins, 2007). Authentic pride arises from success in achieving a specific goal. Consequently, the emotion sends a message to the self about personal success or achievement and leads to a sense of goal progress (e.g., “I am improving my weight control practices”). Hubristic pride involves an inflated sense of self—that is, the individual feels pride in what he or she is (i.e., “I have a healthy weight”) rather than what he or she does (engage in a specific type of behavior). This form of pride is more likely to elicit identity concerns because the focus is on the person’s sense of self rather than on the progress toward a sought goal.

Both forms of pride can have positive and negative effects on regulatory behavior, depending on the circumstances (Huang, Dong, & Mukhopadhyay, 2014; Salerno et al., 2015). Usually, feelings of authentic pride reinforce commitment to self-regulation and the maintenance of the target behavior (Antonetti & Maklan, 2014a; Boezeman & Ellemers, 2008). However, consumers who feel authentic pride due to having progressed toward their weight goal, might consider rewarding themselves by eating more, which reduces weight control behaviors (Salerno et al., 2015). The literature on licensing explains this potential negative side effect of perceived goal progress (Blanken, van de Ven, & Zeeelenberg, 2015; Jordan, Mullen, & Murnighan, 2011) as diminished ability to self-regulate. Research on pride has also identified this effect, especially in situations in which a regulatory goal is active (Wilcox et al., 2011) and the related effort is perceived as low (Salerno et al., 2015). These two factors apply to the current context because participants in this study voluntarily decided to explore the NHS weight control information (i.e., presumably activating weight control goal) and the perusal of information on a Web site generally tends to be a lower effort activity than engaging in actual weight control practices (e.g., exercising). In other words, participants could interpret their feelings of pride as an indication of their progress in weight control and this would decrease their interest in positive self-regulatory behavior.

Conversely, consumers exposed to the Web site might experience hubristic pride and, therefore, develop a sense of superiority to and personal distinction from others (i.e., “I have a healthier weight than most people I think are using this website”; Tracy & Prehn, 2012; Tracy, Cheng, Robins, & Trzesniewski, 2009). This form of pride is linked to the self-concept (rather than the behavior performed). Under this scenario, consumers browsing the content could essentially feel better about themselves and their weight, as they may believe they already have the “healthy status” the NHS Web site is promoting. Hubristic pride is often associated with social comparisons (Shin, Park, & Moon, 2015) and a sense of prestige and social status (Ivanic, 2015). Consumers with this state of mind might have either a positive or negative reaction to the intervention, depending on whether they think the Web site is relevant to their perceived self-identity. Consumers might be more willing to engage in future regulatory actions because of their desire to behave consistently with their identity (Huang et al., 2014). For example, consumers with a healthy weight may be motivated to engage in weight control practices to maintain their weight (Ivanic, 2015). However, consumers might ignore information or activities they perceive not aligned with their identity (Ivanic, 2015; Tracy et al., 2009). Consequently, they might dislike the Web site itself because they deem it as being targeted to consumers with a different weight status (i.e., unhealthy) from their own and not consonant with their self-identity.

Both types of pride often overlap and are difficult to disentangle or measure precisely (Holbrook, Piazza, & Fessler, 2014a, 2014b). Nonetheless, studies (Huang et al., 2014; Ivanic, 2015; Tracy & Prehn, 2012; Tracy & Robins, 2007) have documented that feelings of pride can be differentiated in terms of their relative focus on prestige or goal progress (i.e., hubristic vs. authentic). This differentiation is relevant in the promotion of self-regulatory behavior (Huang et al., 2014; Salerno et al., 2015). Feelings arising from consumers’ perceptions of goal progress are unlikely to cause an increase in pride after a single exposure to a Web site, as investigated in this study. Simply being exposed to weight control information on a Web site is unlikely to cause consumers to believe they have improved their weight control management (i.e., authentic pride). Rather, consumers might feel better about themselves and experience hubristic pride after voluntary exposure to the Web site. Pride could arise from a sense of already complying with some of the recommendations on the Web site or from the perception of already having a healthy weight.

Considering the research context, consumers will be more likely experience hubristic pride regardless of their weight. Hubristic pride may arise from knowledge miscalibration (Alba & Hutchinson, 2000), or the difference between what consumers think they know about their weight (i.e., subjective knowledge; Brucks, 1985) and what they actually know (i.e., objective knowledge; Brucks, 1985), due to exposure to the Web site. For example, studies have shown that distortion of provided information that is inharmonious with the self or avoidance of dissonant information can lead consumers to search for consonant information to avoid experiencing negative emotions (see Gregory-Smith, Smith, & Winklhofer, 2013). When exposed to weight information, consumers are more likely to selectively pay attention to information that makes them feel good about their own condition, thus boosting hubristic pride.
Thus, we propose in this study that pride has a positive self-regulatory influence motivated by (1) the need to maintain identity-consistent behavior (Huang et al., 2014; Tracy et al., 2009) and (2) the desire to experience feelings of pride again in the future (Patrick et al., 2009). This influence is driven by hubristic feelings that increase consumers' behavioral intentions to control/manage personal weight. Thus:

H1 After consumers are exposed to the weight control Web site intervention, hubristic pride will positively and significantly affect their intentions to download the BMI mobile application.

H2 After consumers are exposed to the weight control Web site intervention, hubristic pride will positively and significantly affect their intentions to control weight.

The current theorizing includes BMI given its importance for technology-oriented interventions for weight control (Purpura, Schwanda, Williams, Stubler, & Sengers, 2011) and because the NHS Web site recommends that consumers check their BMI first before proceeding. Despite some criticisms (Burkhauser & Cawley, 2008), health-related studies have used BMI regularly (e.g., Jaworowska & Bazylik, 2009). BMI also serves to check whether consumers will feel hubristic pride due to exposure to this technological intervention. Specifically, if consumers experience hubristic pride (i.e., they believe their weight is better than that of others), those with a healthy BMI should feel particularly good about themselves. In turn, the healthy BMI consumers should show more pride than those with an unhealthy BMI. This notion is consistent with research showing that narcissistic concerns with body image and pride in own appearance are salient motives in successful weight management efforts (Colvin & Olson, 1983). In contrast, if pride is associated with a sense of goal progress (i.e., authentic pride), the level of pride should be independent of BMI and linked to the specific consumer activity completed (i.e., Web site exposure). Thus:

H3 Consumers with a healthy BMI will experience stronger feelings of hubristic pride after exposure to the weight control Web site intervention than consumers with an unhealthy BMI.

Positive and Negative Effects of Pride

Hubristic pride could have both positive and negative effects. If consumers experience hubristic pride due to exposure to the Web site, they might be uninterested in interacting with the technological platform because of a lack of relevance (Salerno et al., 2015). Hubristic pride reflects individual's identity, thus triggering a desire to differentiate from the other users of the platform (Huang et al., 2014). This process is similar to what Ivanic (2015; Study 2) analyzed in the context of consumers’ interactions with loyalty programs. After obtaining a boost in feelings of personal status, consumers have little motivation to continue interacting with the platform. In addition, identity concerns that are part of hubristic pride might lead consumers who feel proud about their weight to discount the interactivity of the technological platform, due to a lack of congruence between the web site’s focus and their identity. Consumers with high hubristic pride may believe they have already acted in accordance with the information provided or that they know all there is to know (i.e., subjective knowledge) about their weight just by visiting the Web site at one point; and though they still pursue regulatory behavior, their information-seeking intentions by interacting with the Web site may decrease. Thus:

H4 After consumers are exposed to the weight control Web site intervention, hubristic pride will negatively and significantly affect their perceived Web site interactivity.

Pride may also result in the formation of positive attitudes toward the Web site information. Prior consumer research found that emotions have a significant effect on attitudes toward advertisements (McKay-Nesbitt, Manchanda, Smith, & Huhmann, 2011) and brand (Pham et al., 2013). Specifically, emotions positively influence attitudes toward the advertisement (Olney, Holbrook, & Batra, 1991) and act as mediators in the impact of affect intensity on attitudes toward the ad, in the case of a positive emotional appeal (Moore & Harris, 1996). Positive emotions are also associated with message liking and perceived message effectiveness (Dillard & Peck, 2000).

Because hubristic pride creates a desire for self-enhancement and distinction, consumers might have positive attitudes toward the information on the Web site (i.e., reading about weight control would reinforce emotional experiences and consumers’ perceived superiority; Markus & Kitayama, 1991). This notion aligns with the self-referencing process, which relates “incoming information to aspects of the self-structure stored in memory, such as internal traits or personal experiences” (Aaker & Williams, 1998, p. 249). Thus, hubristic pride may lead to different evaluations of the Web site’s interactive nature and the information on weight control. On the one hand, consumers may perceive the technological platform as low in interactivity because it is not relevant to the self. Alternatively, they may regard the Web site information positively because it confirms of their health-related superiority and consistency with their self-identity. Thus:

H5 After consumers are exposed to the weight control Web site intervention, hubristic pride will
positively and significantly affect their attitudes toward the information on the Web site.

Interactivity and Attitudes toward the Web site Information

Research on the influence of Web site interactivity on attitudes toward the message produced inconsistent results (Liu & Shrum, 2009). Interactivity is not always beneficial and can backfire (Lohtia, Donthu, & Hershberger, 2003). Nonetheless, in ideal circumstances (Coyle & Thorson, 2001; Fortin & Dholakia, 2005) and from a conceptual perspective (Liu & Shrum, 2009), Web site interactivity has a positive effect on attitudes toward the message (i.e., information on the Web site).

Regarding health behavior change programs on the Internet, Evers, Prochaska, Prochaska, and Prochaska (2003) posit that interactivity (along with behavioral components and user-generated content) is key in assessing the quality of intervention Web sites. According to Harrison, Barlow, and Williams (2007), the interactivity of online health interventions can include a range of tools (i.e., helpline, online polls, embedded multimedia functions, downloadable information), which increase the level of interactivity.

Regarding health-related campaigns, research highlights the success of modern technology-based interventions over more traditional ones. For example, Carter, Burley, Nykjaer, and Cade's (2013) study on the acceptability and feasibility of a weight management intervention showed that an interactive mobile application and a Web site, respectively, were more successful than a paper diary at encouraging individuals to self-monitor for a six-month period. The interactive nature of such mediums/ channels appears to determine positive attitudes and behavioral change. Hurling, Fairley, and Dias (2006, p. 759) propose that a “more interactive system would be more engaging, have a greater impact on people's attitudes, motivation and intention and increase their (self-reported) fitness.” Particularly, they show an interactive technology-based system leads to a reduction in negative perceptions of exercise. Similarly, Webb, Joseph, Yardley, and Michie's (2010) review shows online interventions are more efficient when they incorporate interactive methods to communicate with the participant (e.g., text messages). Finally, Harrison et al. (2007, p. 378) find that increased levels of interactivity of health-related Web sites “can improve the quality and the relevance of the information available to patients,” which can lead to positive attitudes toward the information on the Web site. Thus:

H6 After consumers are exposed to the weight control Web site intervention, the level of perceived Web site interactivity will positively and significantly affect their attitudes toward the Web site information.

Consumer Attitudes and Behaviors

Attitudes toward the Web site information should have a significant role in the persuasion process. The TPB (Ajzen, 1985) confirms the link between attitudes and behavioral intentions; specifically, it posits that attitudes influence behavioral intentions and then actual behavior. The idea that attitudes precede behavior is central to the theory, though it is not always accepted (Manika & Gregory-Smith, 2014). The more favorable the attitude toward the object, the more likely the consumer intends to engage in the recommended behavior.

The consumer behavior literature has also examined attitudes toward the ad, which is more relevant to the attitudinal construct examined in this study (i.e., attitudes toward the Web site information). Attitudes, in this context, reflect “a predisposition to respond in a favorable or unfavorable manner to a particular ... stimulus” (MacKenzie, Lutz, & Belch, 1986, p. 130). Attitudes toward the ad are also a common mediator between attitudes toward the behavior and behavioral intentions, according to the dual mediation hypothesis (MacKenzie et al., 1986). Thus, the more favorable the attitudes toward the information included in the Web site, the greater is the likelihood that consumers have favorable behavioral intentions. Nevertheless, the consistency of the attitude–behavior link is subject to context (e.g., Smith & Swinnyard, 1983).

Shimp (1981) also notes that attitude toward the ad acts as a mediator to brand choice. Similarly, attitudes toward the information on the Web site can determine choice between downloading a health-related mobile phone application and other nontechnology-oriented health actions (measured here as behavioral intentions). Thus:

H7 After consumers are exposed to the weight control Web site intervention, attitudes toward the Web site information will positively and significantly affect their intentions to download the BMI mobile application.

H8 After consumers are exposed to the weight control Web site intervention, attitudes toward the Web site information will positively and significantly affect their intentions to control weight.

Finally, it is hypothesized consumers who intent to use the BMI application will be more likely to control their weight and, as a technological tool, the application should support weight control practices. Mobile applications are a viable approach to weight reduction, and consumers are more likely to use a smartphone rather than a web site or paper diary (Carter, Burley, Nykjaer, & Cade, 2013).

Furthermore, there is a positive link between information search and behavioral intentions (Shiu, Walsh, Hassan, & Shaw, 2011). Because the BMI application provides consumers with information relevant to their
own weight, it should lead to greater intentions to control weight. Thus:

H9: After consumers are exposed to the weight control Web site intervention, their intentions to download the BMI mobile application will positively and significantly affect their intentions to control their weight.

Figure 1 presents the hypothesized model of how hubristic pride, elicited by exposure to a health-related technology intervention, influences self-regulatory behavior. However, H3—the relationship between the BMI groups and pride—is not depicted; this hypothesis serves as an emotion elicitation check (i.e., to validate that the Web site elicits hubristic pride experiences consistently with our theorizing).

METHODOLOGY

Study Design

We use in this study an experimental design embedded in a survey administered over a one-week period in July 2014. Data came from a consumer panel (Qualtrics Consumer Panels) of British consumers who received an e-mail invitation to participate in the survey. We in this study allowed participants to choose whether they wanted to be exposed or not to the technology-oriented intervention on weight control (i.e., the NHS Web site for weight control). Only participants who voluntarily chose to be exposed were included in the study's final sample (266 of 369 participants). This approach investigates Web-based interventions within a more realistic setting that closely resembles actual consumers’ information-seeking processes, thus overcoming issues of artificiality, lack of generalizability (Levitt & List, 2007; Schram, 2005), and limited relevance for policymakers (Morton & Williams, 2009), which are common criticisms of laboratory experiments. Ethics approval for data collection at one of the authors’ institutions was granted before data collection.

Data Collection and Survey Measures

The data collection included three stages: (1) preexposure to the technological weight control intervention stage, which measured participants’ emotions about their weight, particularly in terms of pride (and guilt; see subsequent rationale); (2) the exposure stage, in which participants were asked to choose whether they wanted to peruse the Web site for weight control and to self-report their behavior; and (3) a postexposure stage, which involved measuring participants’ postexposure emotions about their weight in terms of pride (and guilt), perceptions of Web site interactivity, attitudes toward the Web site information, and their resulting intentions to download the BMI phone application and control their weight in the next four weeks. This last stage also included demographic questions (i.e., gender, age, ethnicity, education, household income, and marital status) and questions about participants’ weight and height to calculate their BMI levels. Purpura et al. (2011) found most behavioral weight loss programs using technology start with a BMI calculation, using individuals’ self-reported height and weight.

![Figure 1](image-url)
Figure 1. The impact of pride generated by a technology-based weight control intervention on attitudes and self-regulatory behavioral intentions.
Note: H3 (consumers with a healthy BMI will experience higher levels of pride than consumers with an unhealthy BMI) is not depicted.
Moreover, as discussed previously, BMI may affect the results of the hypotheses, and consequently the BMI group serves as a control variable. BMI levels of 18.5–24.9 are considered healthy and BMI levels of 25 or over unhealthy (i.e., overweight or obese; OECD Health Statistics, 2013). For clarity, the survey described “weight control” before the preexposure stage, as a long-term approach to a healthy lifestyle, which includes healthy eating, dieting, and weight loss practices, for maintaining or achieving a healthy weight. This ensured the two NHS Web pages (i.e., about weight loss and healthy eating) were relevant to all participants, regardless of their BMI.

Established scales from prior literature were used to measure the constructs with consistent 5-point Likert-type scales. Measures of emotions about weight, inclusive of adapted pride and guilt items, came from Watson, Clark, and Tellegen’s (1988) PANAS scale and Roseman et al. (1994) pride scale. The pride items were adapted, since measures for hubris can be inappropriate (Holbrook et al., 2014a, 2014b) because they contain items (e.g., arrogant, conceited, egotistical, pompous, smug, snobbish, stuck-up) that have a negative social connotation and thus are prone to socially desirable responding (Holbrook et al., 2014a, 2014b). Furthermore, research has shown consumers draw different inferences in terms of status and/or goal progress, regardless of the specific words they use to communicate their feelings of pride (Salerno et al., 2015). Consequently, the use of adapted measures of pride increased their comprehensibility and relevance for the participants and topic (Table 1). Although guilt is not part of the hypothesized model, it is used as a manipulation check. Guilt is often considered the negative counterpart to pride (Tracy & Robins, 2007). Although this study posits that the target intervention would elicit positive emotions, it also measures guilt to verify if a negative affect was evoked. If so, this would affect consumers’ responses to the rest of the variables measured in the experiment (perceptions of interactivity, Web site attitudes, and behavioral intentions).

Web site interactivity was measured with an adapted version of McMillan and Hwang’s (2002) scale. Items in this scale were measured on a 5-point Likert scale from strongly disagree to strongly agree, but given the negative valence of the statements, they were all reverse coded prior to the analysis. Attitudes toward the Web site information were measured with Mathwick and Rigdon’s (2004) adapted scale. Measures of intentions to download the BMI mobile phone application came from Jones, Mothersbaugh, and Beatty’s (2000) behavioral intentions measure. Last, behavioral intentions to control weight were measured on a four-week time reference (i.e., “On a scale from 1 to 5, please indicate what your intentions are to control your weight in the next 4 weeks”) based on recommendations in the literature (Chandran & Morwitz, 2005). The survey was pretested with 50 British consumers (part of the same online panel) to examine their ability to complete the questionnaire, the time required, and the initial scale reliabilities (Reid, Worsley, & Mavondo, 2015), while also minimizing issues of common method bias, such as the reduction of item ambiguity (Podsakoff, MacKenzie, Lee, & Podsakoff, 2003).

Manipulation Checks

Manipulation checks show a significant ($t_{(530)} = -3.77$, $p < 0.01, d = 0.33$) increase in pride among participants after exposure to the intervention ($\text{pride}_{\text{postintervention}} - \text{pride}_{\text{preintervention}}$: $M = 2.46$, $SD = 1.30$; $\text{pride}_{\text{postintervention}} = 2.93$, $SD = 1.54$), while there were no significant changes in guilt from pre- to postintervention ($t_{(530)} = -0.13$, $p > 0.05$). An additional check ensured that participants who self-reported their exposure to the NHS Web site actually visited the Web site and, despite spending variable amounts of time on the Web site, clicked on some of its contents.

Sample Description

The final sample consisted of 266 participants, with a good balance in gender (126 men, and 140 women) and age (18–26 years: $n = 64$; 27–37 years: $n = 77$; 38–49 years: $n = 63$; 50+ years: $n = 62$). Most participants had an undergraduate degree (27.8%; $n = 74$), followed by those who had graduated high school (19.9%; $n = 53$) and those who had some college but no undergraduate degree (19.2%; $n = 51$). The vast majority of the sample (80.5%; $n = 214$) was British, followed by Europeans (6.0%; $n = 16$). Household income varied, with 23.7% of the sample earning £15,000–£24,999 ($n = 63$) and 20.3% earning £35,000–£49,999 ($n = 54$). In addition, 40.6% of participants were married ($n = 108$), 28.2% single ($n = 75$), and 15.4% in a relationship ($n = 41$). Last, the BMI was calculated by dividing participants’ self-reported weight in kilograms by the square of their height in meters (kg/m²), which is a common approach in prior weight control studies and investigations (Venn et al., 2007). There was a balance between those with a healthy BMI level (53.4%, $n = 142$) and those with a BMI above healthy levels (46.6%, $n = 124$; that is, overweight/obese), as well as a balance between participants who chose to view the “healthy eating” (54.1%, $n = 144$) and “lose weight” (45.9%, $n = 122$) Web pages.

ANALYSES

Measurement Model and Measurement Checks

A confirmatory factor analysis using Mplus tested the reliability and validity of the constructs (Table 1). All scales had significant factor loadings above 0.77 and were highly reliable and valid, with Cronbach’s α above or equal to 0.90 and average variance extracted (AVE) scores above or equal to 0.70, as per Fornell and
Table 1. Confirmatory Factor Analysis (CFA), AVE, CR, Cronbach’s αs, Tolerance, VIF, Skewness, and Kurtosis Statistics.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Scale Items</th>
<th>Reverse Coded?</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>AVE</th>
<th>CR</th>
<th>Tolerance</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pride</td>
<td>Using the words/statements below please rate how you feel about your current weight: (1 = "not at all," 5 = "extremely")</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I feel proud about it</td>
<td>0.36 (0.14)</td>
<td>-1.20 (0.29)</td>
<td>0.95</td>
<td>AVE = 0.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I feel good about it</td>
<td>0.36 (0.14)</td>
<td>-1.23 (0.29)</td>
<td>0.96</td>
<td>CR = 0.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I feel pleased with it</td>
<td>0.33 (0.14)</td>
<td>-1.29 (0.29)</td>
<td>0.97</td>
<td>α = 0.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I feel confident about it</td>
<td>0.36 (0.14)</td>
<td>-1.20 (0.29)</td>
<td>0.96</td>
<td>Tolerance = 0.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I feel satisfied with it</td>
<td>0.31 (0.14)</td>
<td>-1.23 (0.29)</td>
<td>0.92</td>
<td>VIF = 1.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I feel like I have self-respect due it</td>
<td>0.46 (.14)</td>
<td>-1.05 (0.29)</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attitudes toward the information on the Web site</td>
<td>The weight control information on the Web site were as follows: (1 = "strongly disagree," 5 = "strongly agree")</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Believable</td>
<td>I feel good about it</td>
<td>-0.88 (0.14)</td>
<td>1.11 (0.29)</td>
<td>0.83</td>
<td>AVE = 0.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For me</td>
<td>-0.58 (0.14)</td>
<td>-0.01 (0.29)</td>
<td>0.79</td>
<td>CR = 0.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Informative</td>
<td>-0.64 (0.14)</td>
<td>0.48 (0.29)</td>
<td>0.88</td>
<td>α = 0.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interesting</td>
<td>-0.36 (0.14)</td>
<td>-0.09 (0.29)</td>
<td>0.84</td>
<td>Tolerance = 0.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web site interactivity</td>
<td>Please click the appropriate circle that indicates how well you believe each of the following words or phrases describes the NHS Web site you viewed (1 = "strongly disagree," 5 = "strongly agree")</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unmanageable</td>
<td>Does not keep my attention</td>
<td>-0.60 (0.14)</td>
<td>-0.31 (0.29)</td>
<td>0.94</td>
<td>AVE = 0.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lacks content</td>
<td>-0.44 (0.14)</td>
<td>-0.48 (0.29)</td>
<td>0.53</td>
<td>CR = 0.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I feel good about it</td>
<td>-0.58 (0.14)</td>
<td>-0.01 (0.29)</td>
<td>0.79</td>
<td>α = 0.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I feel satisfied with it</td>
<td>-0.12 (0.14)</td>
<td>-1.09 (0.29)</td>
<td>0.78</td>
<td>Tolerance = 0.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I feel like I have self-respect due it</td>
<td>0.05 (0.14)</td>
<td>-1.17 (0.29)</td>
<td>0.91</td>
<td>VIF = 1.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavioral intentions to download the BMI application</td>
<td>Please select the appropriate circle based on your intentions to download the NHS BMI healthy weight calculator and tracker: (1 = Unlikely, 5 = likely)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Unlikely, 5 = likely</td>
<td>0.14 (0.14)</td>
<td>-1.35 (0.29)</td>
<td>0.93</td>
<td>AVE = 0.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Impossible, 5 = possible</td>
<td>-0.24 (0.14)</td>
<td>-1.25 (0.29)</td>
<td>0.77</td>
<td>CR = 0.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Uncertain, 5 = certain</td>
<td>-0.12 (0.14)</td>
<td>-1.09 (0.29)</td>
<td>0.78</td>
<td>α = 0.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = No chance, 5 = certainly</td>
<td>0.05 (0.14)</td>
<td>-1.17 (0.29)</td>
<td>0.91</td>
<td>Tolerance = 0.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavioral intentions to control weight</td>
<td>Please select the appropriate circle based on your intentions to control your weight in the next four weeks: (1 = Unlikely, 5 = likely)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Unlikely, 5 = likely</td>
<td>0.14 (0.14)</td>
<td>-1.35 (0.29)</td>
<td>0.93</td>
<td>AVE = 0.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Impossible, 5 = possible</td>
<td>-0.24 (0.14)</td>
<td>-1.25 (0.29)</td>
<td>0.77</td>
<td>CR = 0.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Uncertain, 5 = certain</td>
<td>-0.12 (0.14)</td>
<td>-1.09 (0.29)</td>
<td>0.78</td>
<td>α = 0.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = No chance, 5 = certainly</td>
<td>0.05 (0.14)</td>
<td>-1.17 (0.29)</td>
<td>0.91</td>
<td>Tolerance = 0.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Probably not, 5 = probably</td>
<td>-0.65 (0.14)</td>
<td>-0.24 (0.29)</td>
<td>0.87</td>
<td>VIF = 1.15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < 0.001.

Note: AVE = average variance extracted; CR = construct reliability.

Measurement model: χ² = 531.05, df = 199, p = 0.06; CFI = 0.94; TLI = 0.94; SRMR = 0.04; N = 266.

Larcker (1981). The model demonstrated a theoretically and statistically acceptable overall fit (χ² = 531.05, df = 906, p < 0.001; root mean square error of approximation [RMSEA] = 0.07; comparative fit index [CFI] = 0.94; Tucker–Lewis index [TLI] = 0.94; standardized root mean square residual [SRMR] = 0.04). The chi-square value was significant due to sample size (N = 266), but the normed chi-square (χ²/df) was equal to 2.67, within acceptable values (Schumacker & Loram, 2004). This index is less sensitive to sample size, and values less than 5 are usually considered acceptable (Schumacker & Loram, 2004). Moreover, the chi-square index is considered unreliable when sample size exceeds 200 participants and indexes of comparative fit suggest an acceptable solution (Barrett, 2007; Hair, Black, Babin, & Anderson, 2009). The CFI and TLI have acceptable values, exceeding 0.93 (Byrne, 1994) and 0.90 (Hu & Bentler, 1995), respectively. The RMSEA and SRMR are satisfactory, not exceeding 0.08 (Browne & Cudeck, 1993; Hu & Bentler, 1995). Thus, the model has an acceptable overall fit.

Table 2 shows the means, standard deviations, minimum and maximum values, and interitem correlations. As indication of discriminant validity, significant correlations between constructs varied from 0.19 to 0.47, and the Fornell–Larcker criterion (AVE > [r²]) indicated that the AVEs for each construct are greater than the square of the correlation estimates. In addition, there is an adequate variable-to-sample ratio, and there are no signs of extreme multicollinearity as indicated by...
the variance inflation factor (VIF; <5) and tolerance (>0.22) levels for each construct (Hair et al., 2009). Table 1 also shows skewness and kurtosis statistics for all individual items of the main constructs. Acceptable values for the z-score for skewness and kurtosis are between –3 and +3 (Field, 2005; Mardia, 1970). Some individual items were normally distributed because they were within these acceptable z-score values, while others illustrated departures of normality for the data in the form of either a platykurtic (flatter) or leptokurtic (peaked) distribution. However, for all items, the sample size was higher than 200 participants; therefore, in line with Hair et al. (2009), significant departures of normality do not have a substantial impact on the results.

Hypotheses Testing and Post Hoc Analyses

First, differences between BMI groups (healthy vs. unhealthy BMI) are examined via a chi-square test in terms of the chosen Web page participants selected to view (i.e., “Healthy eating” vs. “Lose Weight”) and via a series of t-tests in terms of main constructs of this study (i.e., pride, Web site interactivity, attitudes, behavioral intentions to download the BMI app, and behavioral intentions to control weight), which includes testing H3. Subsequent analyses of H1, H2, and H4–H9 use BMI category as a control variable to test the hypothesized model’s relationships via a structural equation modeling (SEM) approach. A bootstrapping technique with 1000 iterations also tests the indirect effects of the model (Figure 1) to explore the mediating mechanisms underpinning the model. Lastly, ANOVAs are used to examine differences if any among age groups for the main constructs of this study, even though not hypothesized. The results of these analyses can be seen in the next section.

RESULTS

Preliminary Results and H3: Differences between BMI Groups

Consumers with a healthy BMI viewed the “healthy eating” Web page (n = 99), while most consumers with an unhealthy BMI viewed the “lose weight” Web page (n = 79; χ² = 29.79, p < 0.01). Significant differences were found between healthy BMI and unhealthy BMI adult groups for some of the main constructs measured in this study: pride (healthy BMI: M = 2.91, SD = 1.25; unhealthy BMI: M = 2.08, SD = 1.29; t(264) = 5.33, p < 0.01) and attitudes toward the Web site information (healthy BMI: M = 3.74, SD = 0.77; unhealthy BMI: M = 3.93, SD = 0.70; t(264) = −2.09, p < 0.05). The healthy BMI group felt more pride due to the technology intervention, while the unhealthy BMI group had more favorable attitudes toward the Web site information. No other significant differences were found. Thus, H3 is supported; consumers with a healthy BMI felt more pride about their weight than consumers with an unhealthy BMI.

Structural Model

The hypothesized structural model (Figure 1) has an acceptable model fit (χ² = 571.95, df = 218, p = 0.00; RMSEA = 0.07; CFI = 0.94; TLI = 0.93; SRMR = 0.05), accounting for 31.3% of the variance in behavioral intentions to control weight, 12.3% of the variance in behavioral intentions to download the BMI mobile application, and 21.5% of the variance in attitudes toward the Web site information. The normed chi-square is within acceptable values equaling 2.62, and consistent with the previous discussion, all other statistics show a reasonable fit. Table 3 shows results for the direct and indirect relationships, along with a summary of the hypotheses.

Pride positively influenced intentions to download the BMI mobile phone application (H1), but did not significantly affect intentions to control weight in the next four weeks (H2). Pride also had a negative relationship to Web site interactivity (H4) and a positive relationship to attitudes toward the information on the Web site (H5), while Web site interactivity positively affected attitudes toward the information on the Web site (H6). In turn, favorable attitudes toward the information resulted in greater behavioral intentions to download the BMI application (H7) and to control weight in the next four weeks (H8), while the two behavioral intentions measures were positively associated (H9). Thus, all hypotheses were supported, except H2.

As noted previously, pride can be a double-edge sword because it has (1) a negative effect on Web site in-
Table 3. SEM Results.

<table>
<thead>
<tr>
<th>Hypothesized Relationships</th>
<th>Standard Loadings</th>
<th>SE</th>
<th>z Scores</th>
<th>Hypotheses Supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1: Pride → Behavioral intentions to download BMI application</td>
<td>0.23*</td>
<td>0.06</td>
<td>3.63</td>
<td>Yes</td>
</tr>
<tr>
<td>H2: Pride → Behavioral intentions to control weight</td>
<td>−0.11</td>
<td>0.06</td>
<td>−1.80</td>
<td>No</td>
</tr>
<tr>
<td>H3: How pride levels differ among BMI groups (not examined with SEM)</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>H4: Pride → Web site interactivity</td>
<td>−0.25**</td>
<td>0.06</td>
<td>−3.88</td>
<td>Yes</td>
</tr>
<tr>
<td>H5: Pride → Attitudes toward information on the Web site</td>
<td>0.15*</td>
<td>0.06</td>
<td>2.38</td>
<td>Yes</td>
</tr>
<tr>
<td>H6: Web site interactivity → Attitudes toward information on the Web site</td>
<td>0.46**</td>
<td>0.06</td>
<td>8.11</td>
<td>Yes</td>
</tr>
<tr>
<td>H7: Attitudes toward information on the Web site → Behavioral intentions to download BMI application</td>
<td>0.27**</td>
<td>0.06</td>
<td>4.39</td>
<td>Yes</td>
</tr>
<tr>
<td>H8: Attitudes toward information on the Web site → Behavioral intentions to control weight</td>
<td>0.45**</td>
<td>0.05</td>
<td>8.15</td>
<td>Yes</td>
</tr>
<tr>
<td>H9: Behavioral intentions to download BMI application → Behavioral intentions to control weight</td>
<td>0.24**</td>
<td>0.06</td>
<td>4.00</td>
<td>Yes</td>
</tr>
<tr>
<td>BMI Category (as a control) → Pride</td>
<td>−0.32**</td>
<td>0.06</td>
<td>−5.80</td>
<td>n/a</td>
</tr>
<tr>
<td>BMI Category (as a control) → Attitudes toward information on the Web site</td>
<td>0.18**</td>
<td>0.06</td>
<td>2.92</td>
<td>n/a</td>
</tr>
<tr>
<td>BMI Category (as a control) → Web site interactivity</td>
<td>−0.10</td>
<td>0.07</td>
<td>−1.59</td>
<td>n/a</td>
</tr>
<tr>
<td>BMI Category (as a control) → Behavioral intentions to download BMI application</td>
<td>0.04</td>
<td>0.06</td>
<td>0.61</td>
<td>n/a</td>
</tr>
<tr>
<td>BMI Category (as a control) → Behavioral intentions to control weight</td>
<td>−0.04</td>
<td>0.06</td>
<td>−0.75</td>
<td>n/a</td>
</tr>
<tr>
<td>Indirect Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pride → Web site interactivity → Attitudes toward information on the Web site</td>
<td>−0.12**</td>
<td>0.03</td>
<td>−3.39</td>
<td>n/a</td>
</tr>
<tr>
<td>Pride → Attitudes toward information on the Web site → Behavioral intentions to download BMI application</td>
<td>0.04</td>
<td>0.02</td>
<td>1.88</td>
<td>n/a</td>
</tr>
<tr>
<td>Pride → Attitudes toward information on the Web site → Behavioral intentions to control weight</td>
<td>0.07*</td>
<td>0.03</td>
<td>1.97</td>
<td>n/a</td>
</tr>
<tr>
<td>Pride → Web site Interactivity → Attitudes toward information on the Web site → Behavioral intentions to download BMI application</td>
<td>−0.03**</td>
<td>0.01</td>
<td>−2.57</td>
<td>n/a</td>
</tr>
<tr>
<td>Pride → Web site Interactivity → Attitudes toward information on the Web site → Behavioral intentions to control weight</td>
<td>−0.05**</td>
<td>0.02</td>
<td>−2.97</td>
<td>n/a</td>
</tr>
<tr>
<td>Pride → Behavioral intentions to download BMI application → Behavioral intentions to control weight</td>
<td>0.06</td>
<td>0.02</td>
<td>2.34</td>
<td>n/a</td>
</tr>
<tr>
<td>Attitudes toward information on the Web site → Behavioral intentions to download BMI application → Behavioral intentions to control weight</td>
<td>0.06**</td>
<td>0.02</td>
<td>2.69</td>
<td>n/a</td>
</tr>
</tbody>
</table>

*p < 0.01
*p < 0.05

N = 266; χ² = 571.95, df = 218, p = 0.00; RMSEA = 0.07; CFI = 0.94; TLI = 0.93; SRMR = 0.05; R² = 31.3%.

Interactivity, which partially mediates pride’s effects on attitudes, and (2) a positive effect on attitudes toward the Web site information, which fully mediates pride’s effects on behavioral intentions to control weight, as the direct relationship between pride and behavioral intentions to control weight was not significant. Behavioral intentions to download the BMI mobile phone application also fully mediated both the relationship between pride and behavioral intentions to control weight and the relationship between attitudes and behavioral intentions to control weight. Last, interactivity and pride mediated the effects of pride on both behavioral intentions measures. These mediation results further advance understanding of the effects of pride on self-regulatory behavior.

Post Hoc Results: Differences between Age Groups

Due to the violation of the homogeneity of variance assumption (Levene’s test) for attitudes toward the information on the Web site, the differences across age groups for this construct could not be interpreted. Significant differences were found across age groups (18–26, 17–37, 38–49, and 50+) for pride after exposure to the Web site (F(3,262) = 4.22, p < 0.01), Web site interactivity (F(3,262) = 5.76, p < 0.01) and intentions to download the app (F(3,262) = 6.02, p < 0.01). Specifically, older groups (38+) had less pride in their weight than younger groups (18–37). Older groups perceived the Web site to be more interactive, while younger...
The findings have several implications for practice. First, we uncover a new and complex perspective on the role of pride on technology-based social marketing interventions in this study. That is, while pride can enhance attitudes toward the Web site information, it can also negatively affect perceptions of the technological platform interactivity. These effects are critical to practitioners because health interventions delivered online assume consumers’ positive responses to Web site interactivity and this prompts them to engage with the Web site in the long run to benefit from the advice provided (e.g., Papadaki & Scott, 2006). Thus, to avoid any negative effects, designers of Web sites with content likely to elicit positive emotions, including hubristic pride, should consider inserting marketing material that stresses the suitability of the Web site for the user and one’s self (e.g., use of titles such as “Helping you make informed choices that suit you the best”; “From a healthy you to a healthier you”; or use of a self-assessment section titled “Let us get to know you better to offer tailored advice”). This will help counter the effect of hubristic pride on perceptions of interactivity due to a lack of self-relevance. Another potential strategy would be to stress the effectiveness of the platform

Theoretical Contributions

First, we add to the literature on the use of technology-based social marketing interventions in this study. In addition to the widely researched cognitive processes involved in the adoption and usage of technological platforms (Kulviwat et al., 2007), positive emotions elicited by the hedonic experience of using technology may also contribute to the success of technology-based health interventions. The findings show that feelings of pride increase as a result of exposure to a real technology-based weight control intervention aimed at British consumers. This confirms the relevance of eliciting positive emotions, rather than focusing only on negative ones as is often the norm, in social marketing interventions (Dillard & Peck, 2000). Hubristic pride directly encourages the use of other technology-based platforms (i.e., intentions to download the BMI app), but only indirectly influences nontechnology-based intentions to control weight. Thus, consumers exposed to technology-based interventions may be more likely to adopt technology-based solutions, which then can affect nontechnology-based weight control intentions.

Second, we contribute in this study new insights into how pride influences self-regulatory behavior in a technological context.

Implications for Practice

Despite the increasing popularity of technology-based social marketing initiatives intended to promote healthy behaviors, little research has examined the psychological processes underpinning individuals’ responses to behavioral change programs. We provide in this article new insights into how pride influences self-regulatory behavior in a technological context.

DISCUSSION

groups were more likely to download the app, than older groups. No significant differences were found for intentions to control weight (see Table 4).

<table>
<thead>
<tr>
<th>Construct</th>
<th>Age Group</th>
<th>N</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pride about weight after the Web</td>
<td>18–26</td>
<td>64</td>
<td>2.68</td>
<td>1.29</td>
</tr>
<tr>
<td>Intervention</td>
<td>27–37</td>
<td>77</td>
<td>2.78</td>
<td>1.36</td>
</tr>
<tr>
<td>Interventions</td>
<td>38–49</td>
<td>63</td>
<td>2.55</td>
<td>1.41</td>
</tr>
<tr>
<td></td>
<td>50+</td>
<td>62</td>
<td>2.03</td>
<td>1.16</td>
</tr>
<tr>
<td>Total</td>
<td>266</td>
<td></td>
<td>2.53</td>
<td>1.34</td>
</tr>
<tr>
<td>Web site interactivity</td>
<td>18–26</td>
<td>64</td>
<td>3.53</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>27–37</td>
<td>77</td>
<td>3.29</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>38–49</td>
<td>63</td>
<td>3.93</td>
<td>1.04</td>
</tr>
<tr>
<td></td>
<td>50+</td>
<td>62</td>
<td>3.81</td>
<td>0.87</td>
</tr>
<tr>
<td>Total</td>
<td>266</td>
<td></td>
<td>3.62</td>
<td>1.03</td>
</tr>
<tr>
<td>Behavioral intentions to download</td>
<td>18–26</td>
<td>64</td>
<td>3.08</td>
<td>1.28</td>
</tr>
<tr>
<td>the BMI mobile application</td>
<td>27–37</td>
<td>77</td>
<td>3.31</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td>38–49</td>
<td>63</td>
<td>2.89</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>50+</td>
<td>62</td>
<td>2.43</td>
<td>1.25</td>
</tr>
<tr>
<td>Total</td>
<td>266</td>
<td></td>
<td>2.95</td>
<td>1.28</td>
</tr>
</tbody>
</table>
so that pride can be more closely tied to goal progression (i.e., authentic pride) rather than to self-identity (i.e., hubristic pride).

Second, persuading people to change actual behavior, as opposed to momentary engaging with a technological platform, remains a challenge for marketers. Pride has a direct effect on intentions to download the BMI application but does not influence weight control intentions directly; rather, this effect is only indirect and fairly weak overall. Therefore, social marketers should capitalize on the use of technology (e.g., apps, live Web chats, interactive online communities) to promote behavioral change. In today’s instant gratification culture, technology-oriented solutions may provide speedy and more effortless satisfaction of this desire than non-technology options. However, these interactive tools should be designed to ensure that their hedonic dimensions do not distract consumers from focusing on their health goal.

Third, given the findings that intentions to download the application and intentions to control weight are only moderately correlated, marketers should consider developing more persuasive and personalized technology-based tools. For example, they could consider using a mobile application with a personal e-health adviser that motivates consumer actions to control weight and longer term behavioral change (e.g., the e-health adviser could provide personalized feedback or use praise to generate pride). In turn, pride would lead to positive attitudes toward the technological platform, which would encourage consistent and recurrent future behavior.

Lastly, given the age differences found for pride and intentions to download the BMI app, technology-based health interventions may increase feelings of pride more among younger adults, whom have also greater intentions to download the BMI app, than older groups. Additionally, as per the results of this study, younger adults are more demanding in terms of interactive elements of Web sites. Thus, health interventions should be specifically designed for different age groups.

Limitations

The study presents a few limitations that deserve consideration. Scales purportedly developed to differentiate between hubristic and authentic pride (Tracy & Robins, 2007) were not adopted because they did not seem suitable to the current research context. Although these measures have been criticized (Holbrook et al., 2014a, 2014b), additional research could measure both authentic and hubristic pride directly and compare their effects on other variables.

Although self-reported measures of weight and height and subsequent calculation of BMI are common in prior literature (Venn et al., 2007) future research should aim to use actual measures of participant’s weight to avoid self-reporting bias. Before and after measures could also be used in a longitudinal study to examine the impact of weight control interventions on BMI. Nonetheless in this research, BMI was considered as a covariate in our SEM model.

Another limitation is that some participants may have been exposed to the NHS weight control Web site prior to the study. Only 21.4% of the sample had “never” searched for weight control information via any Web sites, the rest had searched for information via general Web sites at least once in the past. Future studies should explore the impact of repetitive exposure to health-related interventions and its effects on pride, attitudes, and intentions.

Differences between age groups for technology-based social marketing and health interventions should also be explored, but caution should be exercised in generalizing the results of the post hoc analysis conducted in this study since this was not the focus of our research. However, these results highlight potentially important implications for technology-based social marketing practice.

Areas for Further Research

As Calder, Phillips, and Tybout (1981, p. 202) note, “often it is infeasible, if not impossible, to represent systematically all the variation in the real-world setting within a single study.” The model has been applied to a specific technology-based intervention and further testing is needed before generalizability across all health and social marketing interventions can be established. Further testing of the model in other platforms such as social networking sites, apps for mobile phones, and smart watches could also prove insightful. Moreover, by employing a representative sample, by using natural actions, behaviors, and an actual Web site, this research has aimed to achieve a high degree of likeness between “the research and the real-world [which warrant] the empirical outcomes observed may be applied in the real world” (Calder et al., 1981, p. 203). Nonetheless this choice also has disadvantages as it allows less control on the experimental setting. Consequently, further laboratory testing of the model presented would also help establishing the paths examined.

Although the study found pride directly affected behavioral intentions to download a mobile health application, it did not directly affect intentions to control weight. Such differences could stem from different appraisals of the target behaviors (i.e., downloading of app vs. weight control) according to the level of commitment and immediate actions required. Further research could explore potential explanations for this result and examine whether the level of commitment and the urgency of the health action moderate pride’s effects on self-regulatory behavior.

Last, the research demonstrates the need to focus on the inferences consumers make when experiencing certain emotions (Huang et al., 2014; Salerno et al., 2015) rather than on the relative effectiveness of discrete emotional reactions as suggested in previous
research (Hastings, Stead, & Webb, 2004). The approach adopted suggests the need to extend current research on the effectiveness of technological interventions by considering the specific psychological processes that favor or constrain consumers’ participation in such programs. A detailed analysis of consumers’ wider emotional and cognitive processes could improve the persuasiveness of social marketing interventions. This research represents a first contribution to this complex topic.

REFERENCES

Colvin, R. H., & Olson, S. B. (1983). A descriptive analysis of men and women who have lost significant weight and are highly successful at maintaining the loss. Addict Behavior, 8, 287–295.

Manika, D., & Gregory-Smith, D. (2014). Health marketing communications: An integrated conceptual framework of key determinants of health behaviour across the
Stage of change. Journal of Marketing Communications. 1–51. doi:10.1080/13527266.2014.946436

Correspondence regarding this article should be sent to: Danae Manika, Lecturer in Marketing, School of Business and Management, Queen Mary University of London, Mile End Road, London E14NS, UK (d.manika@qmul.ac.uk).